Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 171, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610017

RESUMO

Salivary extracellular vesicles (EVs) have emerged as key tools for non-invasive diagnostics, playing a crucial role in the early detection and monitoring of diseases. These EVs surpass whole saliva in biomarker detection due to their enhanced stability, which minimizes contamination and enzymatic degradation. The review comprehensively discusses methods for isolating, enriching, quantifying, and characterizing salivary EVs. It highlights their importance as biomarkers in oral diseases like periodontitis and oral cancer, and underscores their potential in monitoring systemic conditions. Furthermore, the review explores the therapeutic possibilities of salivary EVs, particularly in personalized medicine through engineered EVs for targeted drug delivery. The discussion also covers the current challenges and future prospects in the field, emphasizing the potential of salivary EVs in advancing clinical practice and disease management.


Assuntos
Vesículas Extracelulares , Neoplasias Bucais , Humanos , Medicina de Precisão , Sistemas de Liberação de Medicamentos , Saliva
2.
Viruses ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35632670

RESUMO

New strategies to rapidly develop broad-spectrum antiviral therapies are urgently required for emerging and re-emerging viruses. Host-targeting antivirals (HTAs) that target the universal host factors necessary for viral replication are the most promising approach, with broad-spectrum, foresighted function, and low resistance. We and others recently identified that host dihydroorotate dehydrogenase (DHODH) is one of the universal host factors essential for the replication of many acute-infectious viruses. DHODH is a rate-limiting enzyme catalyzing the fourth step in de novo pyrimidine synthesis. Therefore, it has also been developed as a therapeutic target for many diseases relying on cellular pyrimidine resources, such as cancers, autoimmune diseases, and viral or bacterial infections. Significantly, the successful use of DHODH inhibitors (DHODHi) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection further supports the application prospects. This review focuses on the advantages of HTAs and the antiviral effects of DHODHi with clinical applications. The multiple functions of DHODHi in inhibiting viral replication, stimulating ISGs expression, and suppressing cytokine storms make DHODHi a potent strategy against viral infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Di-Hidro-Orotato Desidrogenase , Viroses , Vírus , Antivirais/farmacologia , Antivirais/uso terapêutico , Di-Hidro-Orotato Desidrogenase/antagonistas & inibidores , Humanos , Pirimidinas , SARS-CoV-2/efeitos dos fármacos , Viroses/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Vírus/efeitos dos fármacos
3.
Viruses ; 14(5)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35632772

RESUMO

A new antibody diagnostic assay with more rapid and robust properties is demanded to quantitatively evaluate anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity in a large population. Here, we developed a nanometer-scale fluorescent biosensor system consisting of CdSe-ZnS quantum dots (QDs) coupled with the highly sensitive B-cell epitopes of SARS-CoV-2 that could remarkably identify the corresponding antibody with a detection limit of 100 pM. Intriguingly, we found that fluorescence quenching of QDs was stimulated more obviously when coupled with peptides than the corresponding proteins, indicating that the energy transfer between QDs and peptides was more effective. Compared to the traditional enzyme-linked immunosorbent assay (ELISA), the B-cell-epitope-based QD-biosensor could robustly distinguish coronavirus disease 2019 (COVID-19) antibody-positive patients from uninfected individuals with a higher sensitivity (92.3-98.1% positive rates by QD-biosensor vs. 78.3-83.1% positive rates by ELISAs in 207 COVID-19 patients' sera) in a more rapid (5 min) and labor-saving manner. Taken together, the 'QD-peptides' biosensor provided a novel real-time, quantitative, and high-throughput method for clinical diagnosis and home-use tests.


Assuntos
Técnicas Biossensoriais , COVID-19 , Pontos Quânticos , Anticorpos , COVID-19/diagnóstico , Epitopos de Linfócito B , Humanos , Peptídeos , SARS-CoV-2
4.
Infect Immun ; 89(12): e0031521, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34543119

RESUMO

Mycobacterium tuberculosis is a chronic infectious disease pathogen. To date, tuberculosis is a major infectious disease that endangers human health. To better prevent and treat tuberculosis, it is important to study the pathogenesis of M. tuberculosis. Based on early-stage laboratory research results, in this study, we verified the upregulation of sod2 in Bacillus Calmette-Guérin (BCG) and H37Rv infection. By detecting BCG/H37Rv intracellular survival in sod2-silenced and sod2-overexpressing macrophages, sod2 was found to promote the intracellular survival of BCG/H37Rv. miR-495 then was determined to be downregulated by BCG/H37Rv. BCG/H37Rv can upregulate sod2 expression by miR-495 to promote the intracellular survival of BCG/H37Rv through a decline in ROS levels. This study provides a theoretical basis for developing new drug targets and treating tuberculosis.


Assuntos
Macrófagos/microbiologia , Macrófagos/fisiologia , MicroRNAs/genética , Mycobacterium tuberculosis/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Tuberculose/etiologia , Tuberculose/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mycobacterium bovis , Superóxido Dismutase/metabolismo , Tuberculose/patologia
5.
Plant Physiol Biochem ; 160: 27-36, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33454634

RESUMO

Tea varieties with specific colours have often been studied by researchers. However, previous studies on the albinism of tea plants have mostly been based on plants with different genetic backgrounds or focused on common components in albino tea leaves, such as amino acids, flavones, and carotenoids. In this study, we conducted widely targeted metabolic and transcriptomic analyses between a wildtype tea genotype (Shuixian, LS) and its albino mutant (Huangjinshuixian, HS). At the molecular level, alteration of gene expression levels in the MEP pathway may have reduced the production of chlorophyll and carotenoids in HS, which could be the main cause of the phenotypic changes in HS. At the metabolite level, a large number of metabolites related to light protection that significantly accumulated in HS, including flavones, anthocyanins, flavonols, flavanones, vitamins and their derivatives, polyphenols, phenolamides. This result, combined with an enzyme activity experiment, suggested that the absence of photosynthetic pigments made the albino tea leaves of HS more vulnerable to UV stress, even under normal light conditions. In addition, except for the common amino acids, we also identified numerous nitrogen-containing compounds, including nucleotides and their derivates, amino acid derivatives, glycerophospholipids, and phenolamides, which implied that significant accumulation of NH4+ in albino tea leaves could not only promote amino acid synthesis but could also activate other specialized metabolic pathways related to nitrogen metabolism. In conclusion, our results provide new information to guide further studies of the extensive metabolic reprogramming events caused by albinism in tea plants.


Assuntos
Camellia sinensis , Metaboloma , Pigmentação/genética , Transcriptoma , Camellia sinensis/genética , Carotenoides , Clorofila , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA